

D-003-001662 Seat No. B. Sc. (Sem. VI) (C.B.C.S.) Examination April / May - 2015 S-601: Design of Experiment &

Faculty Code : 003 Subject Code : 001662 Time : $2\frac{1}{2}$ Hours] [Total Marks	
Time : 2 1/2 Hours ITotal Marks	
	: 70
Instructions: (1) Q. No. 1. carries 20 marks. (2) Q. No. 2 and Q. No. 3 each carries 25 marks. (3) Write the answer of MCQ in answer sheet. (4) Right sides figure indicate marks of that quest	tion.
1 Multiple Choice Questions :	20
(1) The number of possible sample of size n from a popula of N units with replacement is. : (A) N^2 (B) n^2 (C) ∞ (D) $N!$	ation
 (2) Probability of drawing a unit of each selection remains sain: (A) SRSWOR (B) SRSWR (C) Both (A) & (B) (D) None 	same
 (3) Sampling frame is a term used for (A) a list of random number (B) a list of votes (C) a list of sampling units of a population (D) None of these 	
(4) If n units are selected in a sample from N units of populat the sampling fraction is given as:	tion,
(A) N/n (B) $1/N$ (C) $1/n$ (D) n/N	1 +d

	(A)	unrestricted sampling				
	(B)	subjective sampling				
	(C)	purposive sampling				
	(D)	restricted sampling				
(6)		der proportional allocation, the size of the sample from a stratum depends on :				
	(A)	total sample size				
	(B)	size of the stratum				
	(C)	population size				
	(D)	All of these				
(7)	Syst	tematic sampling means:				
	(A)	Selection of n units situated at equal distances				
	(B)	Selection of n contiguous units				
	(C)	Selection of n largest units				
	(D)	Selection of n middle units of a sequence				
(8)	Sim	ple random sample can be drawn with the help of:				
	(A)	random number tables				
	(B)	chit method				
	(C)	roulelte wheel				
	(D)	All of these				
(9)		discrepancies between sample estimate and population ameter is termed as:				
	(A)	human error (B) formula error				
	(C)	non-sampling error (D) sampling error				
D-003-001	662] 2 [Contd				

(5) Stratified sampling comes under the category of:

(10)	The calle	error in a survey other than sampling errors are						
	(A)	formula error	(B)	planning error				
	(C)	non-sampling error	(D)	None of these				
(11)	An	experimental design	is:					
	(A)	a map						
	(B)	a plan of experime	ent					
	(C)	an architect						
	(D)	All of these						
(12)		-		which the treatment	s are			
		cated to the experim						
	` ′	at the will of the i	ınvesı	igator				
		in a sequence with equal probabi	1;+,,					
		None of these	шу					
(13)		domization is a process which enables the erimentor to -						
	(A)	apply mathematical theories						
	(B)	make probability statements						
	(C)	treat errors independent						
	(D)	All of these						
(14)	Loca	al control is a device	e to 1	naintain :				
	(A)) homogeneity among blocks						
	(B)	homogeneity within blocks						
	(C)	both (A) and (B)						
	(D)	neither (A) nor (B))					
(15)	Erro	ors in a statistical r	nodel	are always taken to	o be -			
	(A)	independent	(B)	distributed as $N(0,$	σ_e^2)			
	(C)	both (A) and (B)	(D)	Neither (A) nor (B)				
D-003-00 1	1662]	3		[Contd			

(16)	The	maximum possible number of orthogonal contrasts among					
	four	treatments is					
	(A)	four		(B)	three		
	(C)	two		(D)	one		
(17)	In a	complet	ely random	ized o	design with t treatments and n		
	expe	eriment	units, error	degr	ees of freedom is equal to		
	(A)	n-t					
	(B)	n-t-1					
	(C)	n-t+1					
	(D)	t-n					
				_ ¬			
			$\begin{bmatrix} A & C & A \\ C & B & C \end{bmatrix}$	$\frac{B}{D}$			
(18)	The	layout	$\begin{bmatrix} A & C & A \\ C & B & C \\ B & A & D \\ D & D & B \end{bmatrix}$	$A \mid s$	tands for		
			D D B	C			
	(A)	crossove	er design	(B)	randomized block design		
	(C)	Latin square design (D) None of these					
(19)	A la	itin squa	are design p	oroces	es is :		
	(A)	one way	v classificat	ion			
	(B)	two way	two way classification				
	(C)	three way classification					
	(D)	No way	classificati	on			
(20)	The	method	of confound	ing is	s a device to reduce the size of:		
	(A)	experim	ents	(B)	replications		
	(C)	blocks		(D)	All of these		
D-003-001	1662]		4	[Contd		

2 (A) Answer the following questions: (Any three)

6

- (1) Write assumptions of one-way classification.
- (2) Define: Design of Experiment.
- (3) Write the Yate's method for 2^2 experiment.
- (4) What is meant by sampling frame?
- (5) Calculate sample size for estimating mean.
- (6) Prove the $E(\overline{y}) = \overline{Y}$.
- (B) Answer the following questions: (Any three)

9

- (1) Explain the meaning of missing plot technique.
- (2) Why confounding?
- (3) Prove that

(i)
$$E(\overline{y}_{st}) = \overline{Y}$$

(ii)
$$V(\overline{y}_{st}) = \frac{1}{n^2} \left\{ \sum \frac{N_h (N_h - n_h)}{n_h} S_h^2 \right\}$$

(4) Prove that

$$V(\overline{y}_n)ran > V(\overline{y}_{sys})$$
 if and only if $S_{w sys}^2 > S^2$.

- (5) Prove that $E(s^2) = S^2$
- (6) Three varities of wheat were sown in four plots; its yields are as follows:

Types of	Plot Number			
Varity	1	2	3	4
A	3	3	4	1
В	2	4	4	6
\mathbf{C}	6	5	3	7

(C) Answer the following questions: (Any two)

10

- (1) Estimate one missing yield of one plot in LSD.
- (2) Derive the expression to measure the efficiency of RBD over CRD.
- (3) Prove that $V(\overline{y}_{st})$ is minimum for fixed total size of the sample n and $n_i \propto N_i S_i$
- (4) If the population consists of a linear trend, then prove that

$$V(\overline{y}_{st}) \le V(\overline{y}_{sys}) \le V(\overline{y}_n)_{ran}$$

(5) From the following data find $V(\overline{y}_{st})$ under optimum allocation 10% stratified sample is to be taken:

Stratum	N_n	S_n
I	100	4
II	200	5
III	200	3

3 (A) Answer the following questions: (Any **three**)

6

- (1) Define: ANOVA
- (2) Define: Partial confounding.
- (3) Write ANOVA table for one-way classification.
- (4) Mention in brief need for sampling.
- (5) Explain in brief simple random sampling method.
- (6) A random sample of 100 units is taken without replacement from a population of 1000 units. The population variance is 480. Find simple random sampling variance of same mean?

(B) Answer the following questions: (Any three)

9

- (1) Explain layout of LSD
- (2) Explain Yate's method for 2^3 fatorial experiment.
- (3) Write Anova table for 2^2 factorial in RBD in r replacement.
- (4) Prove that $V(\overline{y}_{st}) = \frac{N-1}{N} S^2 \frac{N-K}{N} S^2_{wys}$
- (5) Prove that if $N-\infty$, then

$$V(\overline{y}_{st}) = \sum_{h=1}^{L} \left(\frac{w_h^2 S_h^2}{n_h}\right)$$
 where $w_h = \frac{N_h}{N}$

- (6) From a population of observation 2, 5, 8, 9 taking all possible of size 2 with replacement verify the following results:
 - (i) $E(\overline{y}) = \overline{Y}$
 - (ii) $V(\overline{y}) = \frac{\sigma^2}{n}$
- (C) Answer the following questions: (Any two)

10

- (1) Explain Statistical Analysis of linear mathematical model for two way classification.
- (2) Estimate one missing yield of one plot in RBD
- (3) Prove that

$$V(\overline{y}_n)_R \ge V(\overline{y}_{st})_{prop} \ge V(\overline{y}_{st})_{opt.}$$

(4) Prove that

$$V\left(\overline{y}_{sys}\right) = \frac{N-1}{N} \cdot \frac{S^2}{n} \left\{ 1 + (n-1)\rho \right\}$$

(5) For studying a characteristic the observations of a population are 10, 12, 20, 22, 26. How many random samples of size 2 without replacement can be taken from it? Making a list of all the samples verify the following results.